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Abstract 

Transitioning to a low-carbon economy 

implies both risks and opportunities in the 

Danish housing sector, which accounts for one 

fourth of Denmark’s CO2 emissions. We study 

the heterogeneous impacts on house prices of 

rising energy prices and energy renovations 

by combining micro-level data on sales and 

housing characteristics with data from the 

official mandatory energy rating reports. We 

find that higher energy prices reduce the 

prices of houses without district heating 

mainly in rural areas. Most renovations will 

not increase sales prices enough to cover the 

costs. Those renovations whose price effect 

will cover the costs have a lower-than-average 

impact on CO2 emissions, are cheap, and 

typically concern houses located in and 

around towns and mid-sized cities and other 

areas with a higher population density and 

well-developed road networks connected to 

towns and cities. We conclude that while 

opportunities for profitable energy 

renovations are concentrated in these areas, 

transitional risks are instead associated with 

peripheral rural areas, where both the 

exposure to rising energy prices and the risk 

of financing renovations is highest. 

Resume 

Omstillingen til et lavemissionssamfund 

indebærer både risici og muligheder i den 

danske boligsektor, der står for en fjerdedel af 

Danmarks CO2-udledning. Vi analyserer 

effekterne på prisen for en-familie huse af 

stigende energipriser og energirenoveringer 

ved at kombinere mikro-data for salgs- og 

boligkarakteristika med data fra 

energimærkningsrapporter. Vi finder, at 

højere energipriser reducerer salgspriserne på 

huse beliggende hovedsageligt i 

landdistrikter, og som ikke opvarmes med 

fjernvarme. De fleste energirenoveringer 

forøger ikke salgsprisen nok til at dække 

investeringsomkostningerne. De renoveringer, 

der forøger salgsprisen mere, end de koster, 

har typisk en lavere effekt på CO2-udledningen 

i forhold til gennemsnittet, er ofte billigere og 

gælder typisk for huse beliggende i og 

omkring små til mellemstore provinsbyer og 

visse områder med højere befolkningstæthed 

og en veludviklet infrastruktur. Mulighederne 

for rentable energirenoveringer er således 

koncentreret i disse områder, mens risici i 

stedet forekommer i de mere perifere 

landområder, hvor både eksponeringen over 

for stigende energipriser og risikoen ved 

finansieringen af renoveringer er størst. 
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ABSTRACT

Transitioning to a low carbon economy implies both risks and opportunities in the Danish
housing sector, which accounts for one fourth of Denmark’s CO2 emissions. We study the
heterogeneous impacts on house prices of rising energy prices and energy renovations by
combining micro-level data on sales and housing characteristics with data from the official
mandatory energy rating reports. We find that higher energy prices will reduce the prices
of houses without district heating mainly in rural areas. Most renovations will not increase
sales prices enough to cover the costs. Those renovations whose price effect will cover the
costs have a lower-than-average impact on CO2 emissions, are cheap, and typically concern
houses in and around towns and mid-sized cities and other areas with higher population
density and well-developed road networks connected to towns and cities. We conclude
that while opportunities for profitable energy renovations are concentrated in these areas,
transitional risks are instead associated with peripheral rural areas, where both the exposure
to rising energy prices and the risk of financing renovations is highest.

1 Introduction

As in other western economies, the residential sector in Denmark is responsible for a large
share of society’s total greenhouse gas emissions. Since the mid-2000s, the sector has
accounted for roughly 25% of total emissions measured in CO2 equivalents.1 In other
words, this sector has substantial potential for climate change mitigation.

A transition to a low-carbon economy will however imply both risks and benefits for
homeowners and credit institutions. In this paper, we focus on the role of energy prices and
energy renovations, i.e. the renovation of a house with the purpose of improving its energy
efficiency.

∗We are grateful to The Danish Safety Technology Authority for kindly providing data from condition reports. We thank
Tim Thøgersen for scraping and structuring public energy report data. We would also like to thank Thomas Sangill, Thais
Lærkholm Jensen, Marcus Ingholt, Martin Oksbjerg, Mette Petry, Ismir Mulalic, Stine Bech, Simone Bonin, Johannes
Poeschl, Thomas Harr and Peter Storgaard for comments and suggestions.

1Computations based on emission matrices provided by the official Danish statistical authority, Statistics Denmark.
Excluding emissions related to car driving the average share over this period remains at around 20%.
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The price of energy may rise as a result of changing conditions in global markets that
raise demand or cut supply or due to rising carbon- or energy taxes. Through increased
heating expenses, particularly for low-efficiency housing, higher retail energy prices can
lower the value of homes and thus their collateral value, making financing riskier. Moreover,
rising energy prices can compromise debt servicing of some households with low efficiency
homes by increasing fixed expenses, thereby adding to the credit risk.

Energy renovations are attractive for households planning to stay in their house for
a prolonged period of time when the discounted flow of savings in energy expenditures
exceeds the investment cost. They can also be attractive to both homeowners and credit
institutions as short-run investments if they increase the sales price more than they cost.
However, if the price increase is less than the investment costs, e.g. due to saving flows not
being capitalized in the sales price, homeowners have no incentive to improve the energy
efficiency of their house if they plan to sell it within few years. In these cases, financing
could be associated with increased credit risk.

By exploiting a uniquely rich dataset of housing characteristics and sales between 2014
and 2020,2 we estimate the effects on house prices of energy renovations and rising energy
prices. We focus on the heterogeneity of these effects: First, we exploit flexible causal
forests to identify observable drivers of heterogeneity in the effect of energy efficiency and
price on house prices (Wager and Athey, 2018; Athey et al., 2019), allowing effects to vary
flexibly with characteristics such as geography, year of construction, initial energy efficiency,
and overall condition/quality of the house. Second, we exploit the obtained insights to
specify more parsimonious and interpretable regression models, which we use to assess
statistical significance. We show that ignoring heterogeneity severely biases the sales price
effects for the individual households, which for example leads to systematically wrong
conclusions as to whether energy renovations are profitable or imply an increase in risk.

Our estimates show that while the magnitude of energy price effects depend primarily
on heating source, effects of energy efficiency depend primarily on location. We simulate
scenarios on energy price hikes and energy renovations by combining these estimates with
information on energy consumption, energy prices, and recommended renovations provided
in the official energy reports.3

These scenarios show that rising energy prices lower housing prices primarily in rural
areas, and for houses not connected to district heating. Specifically, our results imply that a
20% increase in energy prices will reduce house prices in the rural areas by roughly 3-5%.

Moreover, for the majority of households, the effect of renovations on sales prices does
not cover investment costs. Insufficient returns are most likely to occur in the urban areas of
Copenhagen and Aarhus as well as in some of the more remote and peripherical rural areas
(e.g. Lolland, Southern and Western Jutland), while houses in and around smaller towns

2For each of the 195,395 sales in our sample, we are able to combine sales prices with information on characteristics
such as year of construction, house size, roof type, the number of rooms, floors and bath rooms, plot size, number of
buildings, whether a garage or a shed is present, the condition of the house (overall and of the electrical system), as well
as geographical location (coordinates). In the scenario analysis, we further exploit detailed data on expected investment
amounts and energy savings from the official energy report corresponding to each sale. The sample cut in 2020 (November)
results as the official evaluation system underlying the condition reports (proxying quality of a house) was changed
subsequently.

3These reports are mandatory when selling a house and are performed by independent inspectors. For more information,
see https://ens.dk/en/our-responsibilities/energy-labels-buildings (December 9, 2021).

2
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and areas with higher population density, well-developed infrastructure and road networks
connected to towns and cities typically enjoy higher coverage rates. Higher coverage ratios
are typically associated with cheaper renovations that tend to have a lower effect on CO2

emission than the average recommended renovation.

These results imply that transitional risks are concentrated in some of the more remote
and peripherical rural areas. In these areas, house values are typically more sensitive to
rising energy prices, and financing energy renovations is riskier if households do not already
have sufficient equity to use as a collateral. In contrast, the transitional opportunities, in
the form of profitable energy renovations with low absolute costs, are often concentrated in
and around towns and in more central areas of Denmark such as Mid and Western Zealand,
Funen, and Eastern Jutland.

That the most profitable renovations are those that impact CO2 emissions the least
indicates that private incentives may not be sufficient to facilitate climate change mitigation
in this context. We show that if home owners financed profitable renovations before selling,
CO2 emissions of these houses would have decreased by only 13,000 tonnes per year, or less
than 0.02 per cent of total Danish greenhouse emissions. Hence, there may be a scope for
policies, e.g. related to tax deductions and the allocation of subsidies for energy renovation
among private households, which is currently based on a first-come-first-served principle.

The main contribution of our analysis is to the literature on climate-related financial
risks (see e.g. Batten et al. (2016), Krogstrup and Oman (2019), Furukawa et al. (2020),
and Bingler and Senni (2022) for discussions and surveys of this literature). As mortgage
lenders and banks are linked to the residential sector via their lending, they are exposed to
both physical risks and transition risks through debt servicing and collateralization.4 Most
studies have focused on the implications of physical risks (e.g. sea level rise and flooding)
for the value of residential properties and mortgage rates. Recent examples are Murfin
and Spiegel (2020) and Nguyen et al. (2022) who also survey the related literature, and
Mirone and Poeschl (2021) who study the effects of the risk of flooding and sea level rise on
the prices of single-family houses in Denmark. In contrast, there has been little focus on
financial transition risks coming from the housing sector, in spite of these risks becoming
increasingly urgent. Two recent exceptions are Schuetze (2020) who combines energy
efficiency data with financial data to show that residential mortages in Germany imply risk
exposures towards efficiency standards and carbon taxes, and Ferentinos et al. (2021) who
study the effect on house prices of implementing the Minimum Energy Efficiency Standard
in England and Wales.

In this paper, we address at least two instances of transition risks. First, by comparing
the returns on renovations (the estimated change in sales price) with their costs (from the
energy reports), we are the first to shed light on potential risks (or benefits) associated with
financing energy efficiency investment. Due to our rich micro-level data and our flexible
modeling of heterogeneities in the sales price effects, we are able to draw a particularly
granular picture of these risks. Second, our estimates of the impact of effective retail energy
prices on sales prices of residential properties allow us to address the risk stemming from

4Climate-related financial risks are typically divided into physical risks (e.g. flooding, droughts, wildfires, sea level rise,
etc.) and transition risks resulting from the transition to a low-carbon economy (e.g. CO2 taxation, risky new technology,
changes in consumer preferences, regulation, etc.). See e.g. Furukawa et al. (2020).

3
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rising wholesale energy prices and taxes. Given the recent dramatic increase in energy
prices, shedding light on this risk seems particularly warranted.

Our estimation results also contribute to the literature on energy efficiency and residential
sales prices, which goes back to the 1980s.5 A central theme in this literature is the estimation
of the hedonic or implicit price of energy efficiency. Examples, based on data from EPC-type
ratings, include studies for Netherlands (Brounen and Kok, 2011), Sweden (Cerin et al.,
2014), England (Fuerst et al., 2015), Ireland (Hyland et al., 2013), Denmark (Hansen et al.,
2013; Næss-Schmidt et al., 2015) and Germany (Taruttis and Weber, 2022). For the US,
analyses have been based on the Energy Star rating program (e.g. Bruegge et al. (2016) and
Walls et al. (2017)) and the Home Energy Rebate Program (e.g. Pride et al. (2018)). For
Singapore, Deng et al. (2012) study the effect of the Green Mark rating program. The vast
majority of studies find that higher energy efficiency increases sales prices of residential
housing (i.e. the estimate of the hedonic price of efficiency is positive and significant).

We contribute to this literature by allowing for heterogeneity in the sales price effect of
energy efficiency in a systematically data-led way (based on machine learning). Our finding
that accounting for heterogeneity is crucial for our main results not only suggests that price
effects can be very different across sub-markets. It also casts doubt on the validity of the
usual practice of estimating average effects from more aggregate and often pre-specified
market segments (e.g. for a country, a state, a national region, or municipality as a whole)
compared to averaging sub-market estimates. A further advantage of our study, relative to
analyses based on energy ratings (the majority), is that we use data for which efficiency
is measured in kWh, which is the underlying variable of energy ratings. This allows us to
assess the sales price effect of changes in efficiency even if these changes in kWh are not
big enough (but potentially still substantial) to imply a change in the energy label.

The remainder of the paper is organized as follows. In section 2, we explain our empirical
approach and the econometric and machine learning models we exploit. section 3 contains a
description of the data. In section 4 we present our estimates and in section 5, we combine
these estimates with data from the official energy reports in order to simulate scenarios
of sales prices. Finally, in section 6 we discuss the policy implications of our results and
conclude.

2 Econometric framework

Our approach consists of two steps. In the first step, we exploit machine learning methods to
identify sources of effect heterogeneity. In the second step, we use these insights to specify
interpretable regression models and perform statistical inference. We begin by describing
some of the econometric challenges characterizing the analysis of spatio-temporal data. We
then describe the double machine learning and the causal forest approach, and finally how
we use the results of these approaches to specify the regression models.

5Laquatra et al. (2002) provide a survey of the early literature. Surveys of the more recent literature can be found in e.g.
Hyland et al. (2013) and Fuerst et al. (2015). The early studies were typically based on data on the past realized energy
bills of households. In contrast, later studies have relied on data from energy rating schemes for buildings, as such data
have become increasingly available (e.g. the Energy Performance Certificate (EPC) for EU countries and the Energy Star
program for the US).

4
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2.1 Hedonic price modelling with spatio-temporal data

Our analysis builds on a hedonic price modelling approach (Rosen, 1974). In hedonic
models the value of all the utility-bearing characteristics or attributes of a good determine
the value of the good. For differentiated goods traded in a market (e.g. houses), prices
and attributes (e.g. number of rooms, house size, location, etc.) vary across observations.
Empirical hedonic models use this observed variation in the price and attributes of the
differentiated good to infer the implicit or hedonic value/price of one or more of these
attributes.

In practice, this approach translates into regressing the differentiated good’s price on
its various attributes and interpreting the estimated coefficients as the estimated hedonic
prices.6 Adjusting for confounding characteristics is crucial for this interpretation to be
credible, or equivalently for establishing a causal effect, and we therefore adjust for a wide
range of geographical, physical and technical attributes in our models (see appendix B).

We also include variables specifically designed to account for the dependence structure
of the data. In a standard cross-sectional regression, it is assumed that observations are
generated independently (Hendry and Nielsen, 2007), and violations of this assumption
can distort inference (see e.g. Johansen 2006). Cross-sectional observations of realized
sales prices that have been recorded over a period of time are most likely not independent
due to both spatial and temporal linkages.7 Spatially, prices corresponding to ’neighboring’
sales correlate as they depend on the same factors such as the proximity to environmental
amenities, local public goods and services, job opportunities, infrastructure, etc.8 Temporally,
sales prices at any given time are influenced by prices corresponding to recent past sales
of houses that are regarded as comparable. This influence is typically referred to as the
’comparable sales effect’ (see Isakson 2002 and Small and Steimetz 2012).

We tackle spatio-temporal dependence by conditioning the sales price of house i sold
at date τ on the average square meter price realized in the past year in a neighboring area,
yi,τ . Similar approaches have been adopted for example by Can and Megbolugbe (1997)
and Smith and Wu (2009). For each sold property, we compute the average square meter
price of all houses of the same type (i.e. detached single-family homes or townhouses) sold
nearby in the past year, starting from the day before the sale date of the specific property.9

If we do not condition on the average of prices corresponding to past sales in the
neighboring area, yi,τ , we are thus likely to have a problem with dependent observations. In
addition, not including yi,τ may also imply an omitted variable bias in the estimates of the
parameters of interest. In particular, it is possible that past neighborhood sales prices not

6The hedonic price may thus be viewed as the marginal willingness to pay for a non-market good. For example, in a
house price regression the coefficient corresponding to the number of rooms would be interpreted as the willingness to pay
for an extra room.

7The general point that independence is too strong an assumption in many applied settings, for example for observations
with a spatial or geographical dimension, is well-known in the literature, see e.g. section 2 in Gibbons and Overman
(2012).

8The spatial dependence problem has led to the use of spatial econometric methods (Anselin (1988)) in hedonic
analyses based on house prices. However, in referring to such analyses Thanos et al. (2016) argue that these methods can
be inadequate as they are designed to exploit only the spatial, but not the temporal information in the data.

9This measure is computed as follows: We start by considering sales within a square area of 100 square meters. If less
than five sales occurred in that area in the past year, we consider a square of 1 square kilometer. If less than five sales
occurred, we consider a square of 10 kilometers per side. If still less than five sales occurred in the past year, we set the
variable as missing.

5
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only influence the pricing behavior connected to a sale of a given house, but that they could
also have an effect on energy renovation decisions and hence the energy efficiency of the
house. For example, in areas with historically higher prices, where homeowners’ equity and
hence credit opportunities to finance renovation could be better (Næss-Schmidt et al., 2015).

The general problem of omitted variables has received a lot of attention in the literature
of hedonic price modeling due to the spatial nature of the data (see e.g. Kuminoff et al.
2010). Often the regressors of interest (e.g. various non-market urban amenities whose
hedonic price one wants to estimate) are spatially varying and co-varying with the omitted
variables. In our case, this problem could be relevant not only for estimating the sales price
effect of energy efficiency, but also of energy prices as there is geographical variation in this
variable also.

The literature has dealt with the problem of omitted spatial variables in different ways
(see e.g Kuminoff et al. (2010) and von Graevenitz and Panduro (2015) for discussions). A
popular approach for cross-sectional analyses has been to include spatial Fixed Effects (FE),
indicating some specified area (e.g. school district, state, part of a city, or municipality). In
evaluating this practice and based on detailed empirically calibrated simulations, Kuminoff
et al. (2010) show that spatial FEs are often a simple yet very flexible way to deal with
correlation between error terms caused by omitted spatial variables that vary across the
entities used for the fixed effect and not within.

Because of the large number of observations spread out across the country, we also
include municipality dummies as our spatial FEs, thereby accounting for the combined
influence from various factors such as municipality tax rate, local public goods and services.
Finally, we also cluster the variance-covariance structure according to municipalities.

With yi representing the natural logarithm of sales prices in sale i, we therefore specify
our model as

yi = θp(Xi)pi + θc(Xi)ci +Hiγ + yi,τβ +
∑

m

Λm + εi, (1)

where ci and pi represent the natural logarithm of standardized annual energy consumption
in kWh per square meter of heated area at the time of sale, and the natural logarithm of
a weighted average of energy prices across all energy types used in a property.10 The
vector Hi represents housing characteristics at the time of sale, including information from
condition reports, and Λm represents fixed effects at the municipality level m. We do not
place any restriction on functions θp(Xi) and θc(Xi) at this stage, nor on which observable
characteristics Xi represents. We explain how we exploit causal forests algorithms to infer
the determinants of effect heterogeneity in the next section.

As argued above, including yi,τ contributes to alleviating inferential problems related to
dependent observations and omitted variable bias. However, by including yi,τ this regressor
will, at any given date, correlate with error terms at previous dates. Hence, an assumption of
strictly exogenous regressors, which is often invoked for cross-sectional data, does not apply,

10The weights correspond to shares of total standardized consumption as stated in the energy report, see section 3.
Standardized consumption must be distinguished from actual consumption and is a measure calculated (by the inspector
preparing the energy report) under certain standard or ’average’ assumptions about weather conditions, desired temperature,
usage of the house, average family size etc. In the present analysis, we allow standardized consumption to include total
electricity consumption, as for many of the renovation proposals we consider in section 5, these will also imply saving
electricity used for non-heating purposes.

6



VERSION - SEPTEMBER 9, 2022

as this requires that all included regressors are uncorrelated with the error term corresponding
to each observation. As a result, there is no guarantee that e.g. the OLS estimator (used in
the second step of our analysis) will be unbiased under the usual remaining assumptions
(see e.g. Hayashi 2000). However, for consistency of OLS we need only that regressors are
predetermined (i.e. not endogenous), which requires that they are uncorrelated only with
the current error term. That is, if εi,τ denotes the corresponding error term, it holds that
E[yi,τεi,τ ] = 0. We argue in appendix A that this assumption is reasonable as we construct
yi,τ with a sufficient geographical radius and going sufficiently back in time.

2.2 Determining relevant dimensions of heterogeneity through causal forests

Our goal is to estimate the effects of energy efficiency and prices on house prices, while
flexibly allowing for heterogeneity in these effects across numerous observable character-
istics, represented by θp(Xi) and θc(Xi) in equation (1). The standard approach would be
to specify subsamples of the data across which we expect the effects to vary and estimate
separate regressions for each subsample. This approach is susceptible to multiple testing,
which would require specific statistical adjustment, and potentially cherry-picking, with
researchers left to navigate a large garden of forking paths (Gelman and Loken, 2014).
Moreover, this approach is limited by the pre-specification of subsamples and might miss
heterogeneity across unexplored cuts of the data.

Instead, we adopt novel methodological advances exploiting machine learning tools for
the estimation of causal effects under unconfoundedness. These approaches provide two
crucial advantages. First, by orthogonalizing the main variables of interests via machine
learning models, we extract as much information as possible from a given set of controls
(Chernozhukov et al., 2017, 2018). Second, by estimating a causal forest model we can
identify heterogeneity of effects based on data-driven splits (Wager and Athey, 2018; Athey
et al., 2019).

With respect to the model specified in equation (1), we identify sources of heterogeneity
for effects of energy consumption and prices using separate models. The two structural
models underlying our approach can be written as

yi = θT (Xi) · Ti + q(Xi,Wi) + εi

Ti = f(Wi, Xi) + ηi
(2)

with y being the outcome of interest, T the main regressor of interest (pi or ci in equation (1)),
X a set of covariates across which θT (X) can vary, and W eventual additional confounders
that ought to be accounted for to ensure unconfoundedness, but which do not determine
effect heterogeneity.11 For each of our models, Wi consists of Λm and yi,τ , whileXi contains
any characteristic in Hi plus either ci or pi, whichever of these variables do not already enter
the model as the main variable of interest Ti.

We use flexible machine learning models to provide estimates of q̂(X,W ) and f̂(X,W ).
This first-stage orthogonalization allows us to estimate effects of T in a second stage and
can be then thought as a generalization of the Frisch–Waugh–Lovell theorem for linear
regressions. We perform model training and successive orthogonalizations in separate
subsamples. In practice, we split our sample into two random subsets, and fit a machine

11In order to facilitate replication of our approach, this paper adopts as much as possible the notation used in Battocchi
et al. (2021), which is the python package used for estimation.

7
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learning model in each subset. We then use the model fitted on one subset to orthogonalize
the other subset, and vice versa. Due to their high performance in tabular data sets, we use
gradient-boosted trees as first-stage models for both T and Y (Ke et al., 2017).

We identify sources of effect heterogeneity by estimating the models through causal
forests. Building on Athey and Imbens (2016), Wager and Athey (2018) propose to estimate
θ(X) through an ensemble of causal trees. While standard tree-based models operate by
iteratively splitting a sample into subsamples (leaves) based on observable characteristics
such that differences in mean outcomes are minimized within a leaf and maximized across
leaves, causal trees do the same for differences in effects, estimated via sample splitting.
While half of the data is used to estimate the tree structure, the other half is used to estimate
effects within each leaf. In a causal forest, the individual estimate θ(Xi) will then be the
average of the effects estimated within each leaf in which the observations are assigned
across all trees (Athey and Imbens, 2019).

We use the causal forest approach to provide insights on heterogeneities existing in the
data across combinations of observable characteristics X . Given these insights, we then
proceed to estimate these effects based on a standard regression model and OLS. This allows
us to interpret our results clearly and provide statistical inference by taking into account
spatial dependence across error terms.

2.3 Inference based on linear regression

Once the ML algorithm has identified the heterogeneities, we can partition the data into
subsamples and use linear regression to estimate potentially different effects from energy
efficiency and prices for each sub-sample. As we have argued, the parameters in this
regression can be estimated consistently by OLS as long as care is taken in modeling the
dependence structure of these spatial-temporal data. We do so by conditioning on both
average neighborhood sales prices from the past and municipality-fixed effects.

An obvious alternative approach would be to use the results from the ML analysis to fit
one regression equation with the coefficients on standardized energy consumption and energy
prices allowed to vary according to the identified heterogeneity. In other words, a model
within which these two key variables (T ) are allowed to interact with other explanatory
variables (X). However, as pointed out in Balli and Sorensen (2013), because variables in
X can be correlated with other explanatory variables in the model, the interpretation of the
estimates corresponding to the main interactive terms (symbolically denoted X × T ) is not
obvious. Specifically, controlling only with linear (non-interactive) terms of these other
variables is not enough to avoid that X ×T picks up the effects from the interaction of some
of these with those in T . While, as the authors suggest, one could orthogonalize regressors
(or alternatively include all relevant interacting terms), we take the simpler approach of
splitting the data into sub-samples, since we can afford this extra flexibility given the large
number of observations in our sample.

Finally, we use the coefficients estimated through these regressions to extrapolate counter-
factual scenarios and compute the effect on house prices of implementing the recommended
renovations as specified in the energy reports, or of increasing energy prices. Figure 1
visualizes the steps of our approach, and the raw data we use in each of them.

8
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Figure 1
Visualization of estimation approach

NOTES: The figure shows the analytical process of this paper. After processing the data (see section 3), we use a causal
forest model to detect relevant dimensions of heterogeneity. Armed with this knowledge, we estimate effects through OLS
and use those estimates to finally extrapolate scenarios informed on data on energy prices and recommended renovations
contained in the energy reports. Steps highlighted in red are model-based, while black blocks represent raw data.

3 Data

We combine data from multiple administrative registers into a unique dataset covering
over 195,000 sales of owner-occupied single-family homes between 2014 and 2020. The
main building block of our dataset is third-party reported property sale data, which contain
information on sales price, time of sale, and the municipality in which the property is located.
We join this information with data from the administrative land register, containing detailed
information on a wide range of structural characteristics of the property sold, from building
and plot size through its location in the form of geographical coordinates and the type of
roof. A detailed description of the variables used in the analysis appears in appendix B.

We further enrich this data with information from the energy and condition reports
available for the properties in our sample. Both energy and condition reports are prepared
by independent inspectors. During our sample period energy reports are mandatory in
connection with a sale.12 Condition reports are prepared for the vast majority of sales.
An advantage of these data is therefore that we do not have self-selection into providing

12In 1997 energy rating of housing became mandatory in connection with sales, and since 2010, real estate agents must
state the label in sales advertisements.
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an energy report (see e.g. Brounen and Kok 2011, section 5.2, and Hyland et al. 2013).
Energy reports contain detailed data about the expected energy consumption per square
meter calculated by the inspector and energy costs/prices for the given property. Therefore,
standardized energy consumption and effective retail energy prices (i.e. the total price per
kWh including fixed costs, that is paid by the end user) are available for all houses in our
sample.

There is substantial variation in effective retail energy prices across observational units.
This variation persists even across households that use the same and only one form of energy.
For example, for the most widespread heating source in Denmark, district heating, prices
differ markedly between different areas, since these have different utilities supplying under
different circumstances.

There are two types of condition reports for a property. The first contains an assessment
of the general condition of the building(s). The second concerns exclusively the electrical
installations. The condition reports list the number of minor to severe damages, defects, and
omissions, and are a good proxy for the quality of the property at the time of sale (see ap-
pendix B).13 Overall, these data provide a uniquely rich overview of housing characteristics,
and allow us to control for a range of possible confounders when estimating the effect of
energy efficiency and energy prices on house prices. Out of sample, the data we collect are
able to explain up to 80% of variance in square meter prices.

As emphasized in section 2, due to spatio-temporal correlation between observations it
is important to include geographical variables. Hence, we include both municipality fixed
effects and the average square meter price realized in the past year in a neighboring area, pi,τ .
However, while the latter regressor provides a good time-varying proxy for local amenities,
it might be particularly noisy in times and areas with static housing markets and few housing
transactions.

Therefore, as a third geographic indicator we construct a time-constant proxy for ameni-
ties and otherwise unobserved local drivers of price differences by mapping geographic
coordinates in five price areas. We construct these areas by extracting a random sample
of house sales among those we do not consider in our analysis (i.e. houses sold before
2014). We then split these sales in five quintile groups according to their square meter price,
normalized within each calendar year, and train a gradient boosted trees model to assign
the probability that a house will belong to each quintile group given only its geographic
coordinates (Adolfsen et al., 2022). This approach identifies areas with generally high price
levels across the country and within municipalities. In equation (1) these areas enter as five
probability vectors as part of housing characteristics Hi.

Our estimated price areas appear in figure 2, which shows that higher price areas tend
to cluster in town centers or around popular amenities, with lower price areas representing
remote countryside locations and suburban areas neighboring highways and factories. The
figure also shows that this approach identifies substantial variation in price areas even within
a single municipality. For example, all five types of areas are represented within Aarhus
Municipality, the second most populous city in the country. This approach enables us not
only to account for granular geographical variation within municipality and zip codes, but

13Data for the general condition of a house were also included in Næss-Schmidt et al. (2015), but not in Hansen et al.
(2013).
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also to parsimoniously represent this variation in only five dimensions, allowing us to use
price areas as interpretable determinants of effect heterogeneity.

Figure 2
Estimated price areas in Denmark

Least expensive areas

Most expensive areas

Aarhus

NOTES: The picture maps the estimated price areas in Denmark, further zooming into the second largest city in the country,
Aarhus, which contains all five price areas within its territory. The five areas are estimated using a random sample of about
66,000 house sales between 2010 and 2014, which are not included in our analysis sample. We estimate these areas in two
steps. First, we divide sales into five equally sized groups sorted by the realized square meter price, normalized to have
mean zero and a standard deviation of 1 within each calendar year. Second, we train a gradient-boosted trees model to
predict, given the geographic coordinates of the house, in which of the five groups the house is most likely to belong. This
procedure returns a mapping of coordinates to price areas both across and within municipalities.

We remove from our sample a limited number of observations (less than 0.1 per cent)
having unrealistically high energy prices as a result of erroneous recordings. We also remove
seven observations for which the standardized consumption, the heated area, or the energy
price is zero or negative. This minimal sample selection leaves us with a sample of 195,395
sales for our analysis.

4 Effects of energy efficiency and prices on house prices

This section presents our estimates of the heterogeneous effects of energy price and standard-
ized energy consumption (reciprocal efficiency) on residential sales prices. We proceed in
two steps. First, we identify drivers of effect heterogeneity through our causal forest models.
Second, we exploit the insights generated by the causal forest model to design and estimate
separate regressions by OLS, one for each combination of control variables that is relevant
for effect heterogeneity. Through this process, we retrieve heterogeneous effect estimates
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on interpretable subgroups, while both allowing for potentially any combination of control
variables to affect our coefficients of interest and performing valid statistical inference.

In order to document the importance of taking heterogeneity in effects into account,
in this and the next section, we compare our estimates with estimates based on a model
in which the effects of energy efficiency and prices on sales prices do not vary with any
characteristic. The results of this estimation are found in appendix C.

4.1 Identifying effect heterogeneity

The causal forest model allows the estimation of Conditional Average Treatment Effects
(CATEs) for every observation in the sample. Figure 3 shows the distributions of these
estimated effects for both standardized energy consumption and energy prices, revealing
substantial variation around average effects. For standardized energy consumption, estimated
elasticities range approximately between -0.4 and 0, compared to an average estimated effect
of -0.12 (see appendix C)

Figure 3
Distributions of Conditional Average Treatment Effects (CATEs) estimated by causal forests
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NOTES: The figures show the distributions of Conditional Average Treatment Effects (CATEs) estimated by separate
causal forest models for standardized energy consumption and energy price. Blue bars indicate negative effects, red bars
positive effects. For each model, the effect of the variable of interest is allowed to vary by housing characteristics (see
tables 5 and 4 in the appendix), with the exception of municipality fixed effects (too granular) and neighborhood price per
m2 (yi,τ , time-varying).

For energy prices, the heterogeneity is even more staggering. The causal forest estimates,
that for no properties effects are approximately around -0.056, the estimated average effect
based on the model with homogenous effects. Rather, the distribution is separated in
two, with a group of properties characterized by large negative effects and another group
characterized by small positive effects.

We follow the approach of Athey and Wager (2019) and show in two ways that these esti-
mates capture real heterogeneity in the data. In the first approach, we divide the distributions
plotted in figure 3 in five equally-sized groups based on quintiles. We then estimate separate
double machine learning models (Chernozhukov et al., 2018) and estimate the coefficient of
interest within each of these groups. If the causal forest correctly captures heterogeneity in
effects, these coefficients should be monotonically increasing as we move from the lowest
to the highest quintile of the estimated distribution.
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Figure 4
Quantile test: The causal forest models capture heterogeneity of effects in the data

0.3 0.3

0.2 0.2

0.1 0.1

0.0 0.0

Full sample ATE

ATE (Linear DML estimator)

q1 q2 q3 q4 q5
CATE quantile

0.0 0.0

0.2 0.2

0.4 0.4

0.6 0.6

0.8 0.8

R2

First stages R2

T y

(a) Standardized energy consumption

0.20 0.20

0.15 0.15

0.10 0.10

0.05 0.05

0.00 0.00

0.05 0.05

0.10 0.10

0.15 0.15

Full sample ATE

ATE (Linear DML estimator)

q1 q2 q3 q4 q5
CATE quantile

0.0 0.0

0.2 0.2

0.4 0.4

0.6 0.6

0.8 0.8

R2

First stages R2

T y

(b) Energy price

NOTES: The top panels of the figure plot the effect of interest within each CATE quantile estimated through separate
double machine learning models (Chernozhukov et al., 2018). Bars indicate 95% confidence intervals, with observations
assumed to be independent. The bottom panels of the graph show for each quintile the estimated out-of-sample R2 for
both the regressand and the main regressor of interest.

The top panels of figure 4 show that coefficients are indeed monotonically increasing
for both the effect of standardized energy consumption and energy price. Figure 4 also
shows that we can explain up to 80% of the out-of-sample variation in real estate prices and
standardized energy consumption, and up to 75% of the out-of-sample variation in energy
prices, confirming that our control variables account for the majority of what determines
house prices. The top quantile of estimated CATEs of energy prices, for which we estimate
positive effects on housing price, is also the group for which we can explain the least
variation in energy prices given our controls. This pattern points to us not being able to
adequately alleviate omitted variable bias in this group.

In the second approach, we compute the test for effect heterogeneity proposed by Athey
and Wager (2019). The test builds on the estimated CATEs and the first-stage model
residuals and reveals whether the causal forest model is well calibrated. The results of the
test appear in table 7 in the appendix and show that our causal forest models are adequately,
yet not perfectly calibrated. Therefore, we use these models primarily to provide insights on
the drivers of effect heterogeneity and do not use the estimated CATEs directly.

To understand the drivers of effect heterogeneity, we interpret the causal forest models by
computing feature importances, i.e. the normalized number of times a single regressor has
been used by the model to identify a leaf. Despite being silent about the sign of a regressor’s
influence on the estimates, this metric provides a first approximation of how much a specific
regressor matters for effect heterogeneity.
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Figure 5
Feature importance
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NOTES: The figure plots feature importances in the second-stage causal forest model. These scores reflect the number of
times any single regressor is actively used by causal forest trees to split a node and create a new branch or leaf in the tree.
As such, the figure does not represent a variance decomposition, but rather how often the model uses a specific regressor to
separate across groups of houses for which energy consumption has different effects.

We find that few observable characteristics play a substantial role for effect heterogeneity.
Figure 5 shows that the house price elasticity with respect to standardized consumption
primarily depends on the price area and to a lesser extent on whether a condition report
was present at the sale or not. For the energy price effect, the decisive factor is whether the
heating source is district heating or not. The price area to which the property belongs plays
a minor role.

This interpretation is further supported by figure 10. We train single decision trees on
the estimated CATEs as regressand and using X as regressor. These trees split groups
according to price areas and missing condition reports in the case of standardized energy
consumption, and according to district heating and price areas in the case of energy prices.
In the following, we therefore chose to focus on price area, the existence of a condition
report, and district heating as the characteristics to describe the heterogeneity in the price
elasticities of standardized consumption and energy price.

4.2 OLS estimation of the heterogenous effects

We estimate the sales price elasticity with respect to standardized consumption through
ten separate regressions corresponding to the ten combinations of price area and pres-
ence/absence of the condition report, with differences in standardized consumption across
houses reflecting a mix of e.g. differences in insulation and the efficiency of the heating
source. Likewise, we estimate the elasticity with respect to energy price for each of the
ten combinations of price area and heating source being/not being district heating. In all
regressions, we include all remaining controls, and cluster the variance-co-variance matrix
by municipality.
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The estimated heterogeneous price elasticities appear in table 1. For all price areas the
estimated elasticities with respect to standardized consumption are negative and significant
except for the most expensive area. These findings hold regardless of whether the condition
report exists or not. However, for all areas the estimated effect is larger when the condition
report is absent. This pattern occurs because without a condition report we cannot control for
the condition or quality of houses. As a result, the effect from standardized consumption will
be overestimated, since a higher standardized consumption (lower efficiency) is typically
associated with a poorer general condition of a house.14 Finally, the elasticity with respect
to standardized consumption is numerically lower the more expensive the area is.

The estimated effect of energy price differs dramatically across heating source. For
houses that do not use district heating as their primary energy source, energy prices reduce
house prices in the less expensive areas of the country, as in these areas energy expenditures
constitute a larger share of housing costs. For houses with access to district heating, our
results seem to indicate that energy price increases house prices. We attribute this result to
the lack of exogenous variation in energy prices for this subsample. In Denmark, for many
areas with district heating there is an obligation to connect to the district heating net: Energy
prices are often fixed within geographical areas, and we do not have sufficient insights on
how they are determined and on whether they might endogenously depend on house values.

Table 1
Estimated heterogenous price elasticities

Standardized energy consumption Energy price

Price area
No condition

report Condition report No district heating District heating

0 (least expensive) -0.526 -0.347 -0.267 -0.003
(-16.576) (-29.932) (-17.088) (-0.087)

1 -0.423 -0.204 -0.159 0.115
(-9.616) (-12.496) (-6.216) (2.720)

2 -0.328 -0.118 -0.094 0.157
(-8.131) (-5.610) (-3.865) (3.045)

3 -0.157 -0.061 -0.003 0.211
(-5.638) (-3.751) (-0.144) (5.292)

4 (most expensive) -0.039 -0.004 0.090 0.231
(-0.975) (-0.268) (2.725) (2.994)

The table reports the estimated elasticities of sales prices with respect to standardized energy consumption and energy
price. The estimation is based on linear regression models estimated with OLS on separate subsamples of the data. The
t-statistics (in parentheses) are based on standard errors clustered at the municipality level.

Overall, there is a large difference between the estimated coefficients for energy price
and those for standardized energy consumption. If these two variables only influence sales
prices via the variable part of the energy expenditure, i.e. via their product, their coefficients

14This finding fits with the fact that Næss-Schmidt et al. (2015), whose data include condition reports, find a lower effect
from energy label (rating) than that found in Hansen et al. (2013) that do not include this information. In the latter study,
the authors do not have information from condition reports, but are aware of the bias it may introduce.
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should be identical. One interpretation of the difference in coefficients can be if buyers
prefer higher energy efficiency (lower standardized consumption) - not only because it
implies lower energy costs in monetary terms but also because it implies lower emissions. In
such a case, the effect from standardized consumption will be greater than the energy price
effect. A more irrational behavior could also explain the difference. For example, due to the
emphasis on the energy rating in connection with a sale, the buyer could place relatively
more weight on energy efficiency than on the effective cost per kWh.

Figure 6
Partial regression plots
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NOTES: The figure shows a binned residualized scatterplot of the relationship between log house prices per square meter
and key variables of interest, divided by price areas (left) and heating source (right). Each plot residualizes the main
regressor and the regressand using the estimated first-stage gradient-boosted trees models. For each price area we then bin
the residuals in 50 approximately equally sized bins according to the regressor residuals, such that each bin represents
approximately 2% of the data within each group. Finally, we plot the average of the regressand and regressor residuals
against each other for each bin in a scatterplot, where the size of each point is proportional to the number of observations it
represents.

Figure 6 supports the choice of a log-log specification for the separate regressions. The
figure shows binned scatterplots of the residuals of log energy price and log standardized
energy consumption against log square meter house prices, when adjusting for all remaining
controls. We split each plot by the most relevant dimension for effect heterogeneity.

The left panel not only shows that the conditional relationship between house prices and
energy consumption is linear in log space, but also how the slope of the relationship changes
across price areas. The relationship is strongest for rural, cheaper areas, and approximately
zero for expensive urban areas.

The log-linear form implies that a given absolute decrease in standardized consumption
will imply a higher absolute price increase, the lower the initial standardized consumption
is. Hence, the marginal willingness to pay for extra efficiency increases with efficiency.
This pattern could reflect the limited supply (relative to demand) of houses with very high
efficiency and/or that sub markets for high-efficiency houses are in general very different
from submarkets for houses of lower efficiency.

The right panel shows that the relationship between house and energy prices also changes
starkly depending on whether the house uses district heating or not. For houses using
alternative heating sources, the relationship is negative and roughly linear. For other houses,
the relationship is primarily positive, and negative for the highest percentiles of conditional
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energy price. Figure 11 in the appendix further splits these partial regression plots by price
areas. Mirroring the results in table 1, the figure reveals that the positive association between
energy and prices of houses without district heating is not present in rural areas and is
relatively noisy in other areas.

District heating is primarily present in urban areas, and its pricing not only varies geo-
graphically, but is also potentially endogenous. We acknowledge that our analytical approach
is not able to tackle such endogeneity. Therefore, when discussing policy implications of
rising energy prices, we will focus on energy prices for houses that do not use district heating
as a heating source.

5 Scenarios for energy renovations and rising energy price

This section combines the results presented in section 4 with information from the energy
report on both energy prices, energy savings, and investment costs corresponding to the
proposed energy renovations. Through this combination, we investigate whether energy
renovations can be expected to increase house prices enough to cover the initial investment
costs. Moreover, we assess how much it will cost society and how much total CO2 emissions
can be reduced when households renovate. Second, we assess the potential impact on house
prices of future increases in energy prices and/or taxes.

5.1 The transitional risks and opportunities of energy renovations

We focus on renovation proposals that in the energy report are classified as being profitable.
Reports classify an investment as profitable if the implied energy savings from renovation
will cover the initial investment cost before the installed device needs to be replaced. For
these proposals, the report contains an estimate of the costs of the proposed investment in
addition to its implied savings.15

In the renovation scenario, we assume that all households carry out all profitable in-
vestments proposed and only these. On the one hand, this assumption may be viewed as
an upper limit for the extent of renovation and the resulting credit demand. For example,
homeowners could regard the individual proposals more as alternatives, some of which are
relatively more profitable than others. On the other hand, households may prefer energy
renovation in connection with other reconstructions or extensions of the house. In that
case, the household’s total investment costs and credit demand could be substantially bigger.
However, our results do not provide information about the increase in house prices that
could result from combined renovations (see footnote 15).

For each level of energy efficiency measured by the energy rating, figure 7 shows the
total number of houses sold and the share with profitable proposals. As expected, the figure
shows that it is mainly among households with medium to low efficiency (energy labels C
through G) for which profitable investments are possible.

We compute how much the sales price will increase if a given household carries out
all profitable renovations as the difference between the regression function that applies for

15The report also contains proposals of energy renovations that should be combined with other reconstructions or
extensions of the house. The expected costs of these are, however, more uncertain and therefore not stated in the report. In
addition, some proposals are classified as ’recommended’, but as this is optional for the inspector to fill in, it is often left
empty.
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Figure 7
Distribution of profitable proposals by energy rating/label
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NOTES: The figure shows, for each energy rating/label, the number of houses in our sample split by whether
the energy efficiency renovation described in the report is deemed profitable or not by the inspector. A is the
label for the highest energy efficiency levels (covers labels A2020, A2015 and A2010 of the official scale. See
www.ens.dk). Label G indicates the lowest efficiency. On the top of each bar the figure reports the share of
profitable renovations in the subsample. The category ’Not profitable’ corresponds to either no proposals or
the aforementioned proposals that should be combined with other renovations/reconstructions of the house.

this household evaluated in the present level of standardized consumption and evaluated in
the hypothetical level after all profitable renovations have been carried out. We only use
the estimates for which the condition report is available. Hence, the estimated regression
functions that apply for the individual households correspond to those underlying table 1,
third column.

Table 2 compares estimated house price increases and investment costs. The upper part of
the table presents results based on estimation that takes heterogeneity into account. The first
column shows the estimated average price increase resulting from profitable renovations.
The larger OLS results are our preferred estimates. Causal forest models are not perfectly
calibrated, and therefore we interpret results based on those estimates as lower bounds.

The last three columns compare the price increase resulting from renovation to the
investment cost. We focus on the price return ratio on investment, which represents the
estimated house price increase divided by the invested amount. The ratio thus reflects
the house price return in kroner per 100 kroner invested. Overall, the table shows that
energy renovations do not typically increase house prices enough to compensate for the
investment costs. While there are some investments that have a very high return ratio due to
low investment costs, the median return ratio is well below 1 no matter the model chosen
once effect heterogeneity is accounted for. For most houses, the investment cost of energy
renovations would not be fully reflected in the sales price.
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Table 2
Renovation scenario: Main results for all of Denmark

Average
renovation effect
(thousands kr.)

Median price
return ratio on

investment

Mean price
return ratio on

investment

Percentage with
return ratio >

100%

Heterogeneous effects

Causal forest 44.23 31.28 69.95 15.09
OLS 72.31 62.90 120.19 30.06

Homogenoeus effects

Double machine learning 73.84 59.21 106.22 28.86
OLS 149.28 117.68 211.10 56.86

NOTES: The first row computes renovation effects through the CATE estimates presented in the left panel
of figure 3. The second row computes renovation effects through the estimates presented in table 1, where
coefficients that are not statistically significant at the 1% level have been set to zero. The last two rows compute
renovation effects through the estimates presented in the last two rows of table 6.

The last two rows of the table, which extrapolate effects of renovations from the bench-
mark models (with homogenous efffects) presented in table 6 in appendix C, highlight the
importance of accounting for heterogeneity. The differences in results relative to the first
two rows are striking: First, the estimated renovation effects (price increases) are much
higher when assuming homogeneity reflecting highly overestimated average effects. Second,
the main conclusions change. By ignoring effect heterogeneity, it would appear that the
majority of renovations have return ratios higher than 100% when using OLS results.

To sum up, table 2 shows that for the great majority of the houses in the sample the
returns (price increase) do not cover investment costs. As we only focus on profitable
renovations in the long run, this result implies that the future flow of energy savings is not
fully capitalized into sales prices.16 Taking heterogeneity into account is crucial for reaching
these conclusions. We discuss the implications of these results further in section 6.

Nonetheless, the aggregate results from table 2 hide substantial geographical variation.
Figure 8 highlights the geographical variation by dividing the map of Denmark into 4x4
kilometer grids. For each grid, we compute the share for which the price increase is greater
than the investment cost. Deep red indicates that the share is close to 1, while the dark blue
indicates that it is close to 0.

In the urban and suburban areas of Copenhagen and Aarhus, the price increase rarely
covers the investment cost. This result also holds for low-price rural areas, such as rural
Lolland, and parts of Western and Southern Jutland, despite houses in these areas having
lower energy efficiency on average. Hence, despite rural areas having the largest percentage
price increases, measured in absolute terms (kroner), these increases rarely cover the invested
amount. In rural areas, this result is mainly due to very low sales price levels and to a less
extent higher investment costs. In urban areas, the primary reason is that house prices are
generally insensitive to energy efficiency. One explanation for this insensitivity could be
that energy expenditures in general constitute a small share of the overall housing costs in
urban areas.

16This result is in line with the findings in Næss-Schmidt et al. (2015).
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Figure 8
Returns on recommended renovations are lowest in cities and low price rural areas
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NOTES: The figure divides Denmark in squares of 4x4 kilometers. Within each square, the color scale indicates the share
of houses whose price increase after a renovation would be higher than the expected investment cost in the report. The
renovation effects of house prices are computed through the estimates presented in table 1, where coefficients that are not
statistically significant at the 1% level have been set to zero. Squares with less than five sales occurring in our sample are
not shown.

Figure 8 shows that although for the majority of houses in the suburban/urban areas of the
biggest cities and some low-price rural areas energy renovations do not pay off in the form
of an increase in sales price, there exist a sweet spot in which return rates are considerably
higher and often above 1 (100%). These areas are large parts of Eastern Jutland, Funen and
Mid and Western Zealand, but also specific areas in and around certain towns (e.g. Vejle,
Ribe, Silkeborg, Roskilde, and Nykøbing Falster). The top panel of figure 9 shows that the
sales prices of these houses are typically within a range of roughly kr. 1-2.5 mio. For more
expensive houses with similar or slightly lower absolute price increases (renovation effects),
the return ratio decreases.

The renovations associated with houses in this sweet spot are, however, not those that
make the largest dent in the housing sector emissions. The bottom panel of figure 9 shows
that the return ratio of energy renovations in terms of house prices is negatively correlated
with the return in terms of CO2 emission reductions. Renovations, the costs of which are
covered by the price increase (return ratio ≥ 100%) and which are therefore less risky in the
short run for an investor, on average reduce a relatively small amount of emissions. On the
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Figure 9
Investment return ratios are related to house prices, reductions in CO2 emissions, and investment
costs
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NOTES: The figure is based on estimates from the heterogeneous linear regression models (OLS). For each observation
in our sample, we combine our results with data from both the sale and the energy report to compute the effect of the
recommended renovation on house prices and its investment return ratio (effect on house price over investment costs). The
effect for houses for which the estimated renovation effect is insignificant is set to zero. These measures are then compared
to the expected renovation cost and reduction in CO2 emissions. In each graph, we group the full sample in approximately
50 equally-sized bins given the value of the x-variable. Groups for which the x-value is the same are pooled together. We
then plot averages within each bin as a scatterplot, indicating with market size the relative size of the bin.

one hand, this relationship shows that the private economic incentive for reducing CO2 is
small. On the other hand, houses in the sweet spot can be renovated at a relatively low cost
with a positive return on the investment and still contribute to CO2 reductions.

We confirm this interpretation through a simulation exercise, where we assess the costs
and benefits of renovating subsets of the houses in our sample before a sale (table 3). We

21



VERSION - SEPTEMBER 9, 2022

Table 3
Simulations of aggregate impacts on house values and CO2 emissions of selected renovations

Renovate top 25% of
houses in terms of
house price return

ratios

Invest the same amount
to reduce as much CO2

emissions as possible

Total investment cost, kr. million 2403 2403
Sum of house price effects (causal forest), kr. million 2668 1100
Sum of house price effects (OLS), kr. million 4749 1714
CO2 saved, tonnes 13597 66153

- CPH-NYC flights 20601 100232
- Carbon offset cost, kr. million 8 39

NOTES: The first column computes aggregate figures given renovating before a sale the 25% of houses for
which the ratio between the price effect of a renovation and its cost is highest. These renovations cover over 36,000 houses.
In the second scenario, we simulate renovating as many houses as possible given the same invested amount, starting
from houses for which emissions are reduced the most for each invested krone. This scenario represents the maximum
achievable reduction in emissions for a given total investment. We price each tonne of CO2 according to the EU Emission
Trading System futures price. At the time of performing this calculation (December 6 2021), the EUA futures price was at
a record high of 81.25C per tonne.

consider two strategies. In the first, we select 25% of the houses to renovate based on
their return ratio. These renovations are incentive-compatible, in the sense that the costs
of renovations will be covered by the short-run increase in sales prices: Investing in such
renovations before a sale will return a profit, such that owners have the incentive to renovate
both in the short and in the long run. While performing these renovations will cost over
kr. 2 billion, these costs will be covered by the increase in sales prices even considering
the lower bound estimate provided by the causal forest model. These incentive-compatible
renovations would nonetheless save over 13,000 tonnes of CO2 emissions yearly. These
results point to an unrealized potential of reducing emissions in the residential sector.

We compare this strategy to one in which the available funding for investments is the
same, but the houses to renovate before selling are selected by the amount of CO2 emissions
reduced per invested krone, as proposed by Lang and Lanz (2022).17 These renovations
would not be incentive-compatible in the short run. Given an expenditure of kr. 2.4 billion,
the total increase in house prices would be of only kr. 1.7 billion, even considering the larger
OLS estimates.

While the yearly reduction in CO2 emissions would be about five times larger, the eco-
nomic value of these emission reductions provides a good reference point for the feasibility
of such an investment.18 In the best-case scenario, making these renovations incentive
compatible in the short run would require a subsidy of about kr. 500 million. The achieved
emission reductions would be currently priced at approximately kr. 39 million yearly, based
on the EUA futures price (see footnote 18) and the EUR/DKK exchange rate.

It is beyond the scope of this paper to discuss whether such a subsidy would be efficient
or optimal. Moreover, our simulations only consider houses that have been in the market:
We cannot account for energy-inefficient houses strongly benefiting from energy renovations

17In this scenario we would be able to renovate about 25,000 houses, compared to the 36,000 houses renovated in the
first scenario.

18We price each tonne of CO2 according to the EU Emission Trading System futures price. At the time of performing
this calculation (December 6 2021), the EUA futures price was at a record high of 81.25C.
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which have not been in the market in the past decade. Nonetheless, our results highlight
that emission reductions currently priced at approximately kr. 8 million yearly could be
achievable even without explicit subsidies, as these are already incentive-compatible in the
short run. This paper shows that not only identifying these renovations is possible, but also
that such investments represent an easy first step in reaching established climate goals at no
cost for the taxpayer.

5.2 Rising energy prices

Based on the discussion in section 4, we regard the price elasticities with respect to district
heating prices (table 1) as being too uncertain. In our price scenario, we therefore focus on
what would happen to house prices if the prices of other energy types increased. In light of
the recent large increases in energy prices, such a scenario seems to become increasingly
relevant to consider.

In a scenario for rising energy prices, there are fewer possible assumptions to make,
relative to a scenario for renovation. As a point of departure, one may simply assume that
the energy price increases by a certain percentage. As a baseline scenario, we assume a 20%
increase in the kWh price.

Based on the fourth column in table 1 and our discussion in section 4, we conclude that
increasing energy prices can be expected to lower house prices in the two least expensive
areas, areas 0 and 1, respectively. A 20% increase in the energy price implies a reduction in
house prices of 4.75% and 2.86% for price areas 0 and 1 respectively (correcting for the
logarithmic approximation). Whether our results can be extrapolated to more extreme
price increases is uncertain. For example, our analysis does not account for homeowners
switching to other heating sources if their present one becomes sufficiently expensive.

6 Conclusions and implications for credit institutions and policy makers

Our analysis identifies both transitional risks and opportunities in the residential sector. Risks
are primarily associated with rising energy prices and low return ratios for energy renovations
and are concentrated in peripheral rural areas (e.g. Lolland, Southern and Western Jutland).
In the past few years, such areas have been the center of political discussions in Denmark,
with voiced concerns that financial institutions are overly prudent when it comes to financing
real estate purchases in these areas. Though not directly related to those discussions, our
analysis shows that these areas are among those that are most exposed to transitional climate
risks.

Specifically, in these areas the already low housing values to be used as collateral by credit
institutions are particularly exposed to rising energy prices, which recently have increased
dramatically. For example, to the extent that the recent extraordinary large increases in the
price of natural gas have increased expectations of future natural gas prices significantly,
this is likely to have put a downward pressure on the value of homes in some of these
areas.19 Our scenario analysis further reveals that for an upcoming seller or a credit institute,
there will typically be no incentive to finance these renovations as the investment costs
are not going to be covered by the increase in the market value of the house. Financing

19For an analysis (in Danish) of the effect on sales prices of rising natural gas prices, see Ingholt and Møller (2022),
which builds on the work underlying the present paper.
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such investments can be risky, especially if the renovating households have already high
loan-to-value ratios and little equity besides.

Nonetheless, two factors mitigate these risks. First, the investment amount from the
energy report is an upper bound for the actual private cost for the homeowner, as these costs
do not account for tax deductions and subsidies. For example, in Denmark it is possible to
apply for a lump sum subsidy for energy efficiency improvements of one’s home, depending
on one’s current energy rating, and until recently it has been possible to deduct expenses
in connection with energy renovations. It is possible that similar tax deductions could be
reintroduced. Moreover, the stated investment amount is based on the assumption that
professional craftsmen are hired to carry out the improvements. Often proposals involving
e.g. the replacement of insulation material or various minor components or devices can be
carried out by homeowners themselves at a lower cost.

Second, not only may the investment cost be overestimated, our estimated price increases
also reflect the current market valuation of energy efficiency. This valuation and the
attention markets pay to energy efficiency might increase as energy prices increase, and
energy consumption becomes more salient.

Due to these issues the return ratios for energy renovations computed in our scenarios
could be regarded as lower bounds. Nevertheless, we still argue that the profitability of these
renovations will still be lower, relatively speaking, in low-price rural and peripherical areas.

Financial opportunities consist in what we have referred to as a ’sweet spot’ in terms of
returns on energy renovation. For houses in the price range of kr. 1-2.5 million, typically
located in and around smaller towns and areas with a higher population density, well-
developed infrastructure, and road networks connected to towns and cities (e.g. Mid and
Western Zealand, Funen and Eastern Jutland), returns on energy renovations are relatively
high and often above 100% (see the map, panel b in figure 8). At the same time the
investment cost associated with these houses is often relatively low. From the point of
view of credit institutions, energy renovations are thus associated with little risk in these
areas, as the collateral value can be expected to increase to at least match the issued loan for
renovation.

When it comes to the opportunities for climate change mitigation, we have also shed some
light on the potential for the residential sector to reduce CO2 emissions. On the one hand,
our results show that the renovations with the highest private returns are not those that will
reduce CO2 emissions the most. This finding suggests that private incentives can only partly
contribute to the solution of the emission problem in this context. Specifically, there should
be scope for policies that facilitate mitigation in the housing sector by, for example, means
testing tax deductions and subsidies for renovations against the CO2 reducing potential of
the individual renovation. On the other hand, we have shown that it is possible to save over
13,000 tonnes of CO2 emissions yearly, alone from renovations that are incentive-compatible
in the sense that the investment costs are covered by the increase in sales price.
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Appendix

A Predeterminedness of yi,τ

For consistency of OLS, we need regressors to be predetermined (i.e. not endogenous).
This requires that they are uncorrelated with the current error term, here implying that
E[yi,τεi,τ ] = 0, where εi,τ denotes the corresponding error term. To see what this restriction
implies, assume first, without loss of generality, that the average, yi,τ simply includes only
one past sales price and ignore regressors other than a constant. Hence, the regression
equation becomes, yi,τ = α + βyi,τ + εi,τ , where yi,τ is the log sales price of property
i sold at time τ and yi,τ = yj,τ̃ , i.e. the sales price of property j sold at time τ̃ < τ.
It follows that E[yi,τεi,τ ] = E[yj,τ̃εi,τ ] = E[(α + βyj,τ̃ + εj,τ̃ )εi,τ ] = βCov(yj,τ̃ ; εi,τ )+
Cov(εj,τ̃ ; εi,τ ). Therefore, since yj,τ̃ depends on previous error terms, the predeterminedness
of the regressor yi,τ requires zero correlation between the current and past error terms. This
result stresses that in constructing yi,τ , care is taken to ensure that this measure includes
enough ’comparable sales’ by specifying a sufficient radius and going enough back in time,
otherwise the error terms will correlate so that E[yi,τεi,τ ] 6= 0.

B Data description

The data we consider consist of daily observations of realized sales prices and determinants
of these collected for Denmark over the period January 1 2014 to November 18, 2020. Each
observation corresponds to a property sold only once during this period. The sources are
described in section 3. Table 4 contains a grouped list of all variables included in the analysis
and their main summary statistics.

Regressand

The regressand is the natural logarithm of the sales price of property i.

Main regressors

Standardized energy consumption: The natural logarithm of standardized energy con-
sumption in kWh per square meter of heated area per year. Hence, this is the reciprocal of
energy efficiency. The current Danish energy rating scheme, with labels from A2020 to
G, is based directly on intervals for the standardized energy consumption per square meter
per year. This consumption is however only associated with heating space and water. As
mentioned in the text above, we include total electricity consumption. For further details,
see above.

Energy price: The natural logarithm of a weighted average of energy prices across all
energy sources used in the property. The weights are the respective shares of standardized
consumption in kWh. For further details, see above.

Control variables

In the attempt to recover a causal effect from the main regressors on sales prices, it is
important to control for a wide range of available variables, particularly those that are
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expected to be important for the sales price and likely also correlate with efficiency and/or
energy prices (i.e. confounders). One obvious aspect to control for is the physical quality
or condition of the house. In particular, properties with low energy efficiency are typically
also properties in a poorer general condition. Quality is a many-faceted and intangible
variable, and we proxy this by the data from the official condition reports for the property
(damages, defects, and omissions). We have access to reports both for the general condition
and electrical installations of the property. In particular, from both reports we included the
number of so-called K1s, K2s and K3s, which cover damage, defects, or omissions that can
be classified as less severe, critical and critical with potential spreading to other building
parts, respectively. In addition, we also included the number of ’issues’ that the expert,
during his/her inspection, suggested should be examined further. These are the ’unknown
concerns’ in table 4.

We included square meter measures for the inhabital area, total built-up area and plot
area.

A range of other technical/structural characteristics of the house were also included: In
particular, we included indicator variables for the type of roof, the number of rooms, the
number of bathrooms, the number of floors, the type of main heating source, the type of
supplementary heating source, whether the property includes a garage, a shed, and a covered
terrace.
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Table 4
Descriptive table, continuous variables

Variable name Mean Median
Std. de-
viation

Pct.
missing Histogram

Regressand

Log price per m2 9.5 9.5 0.7 0.0

Main regressors

Log energy consumption per m2 5.2 5.2 0.4 0.0

Log energy price -0.1 -0.1 0.3 0.0

Continuous regressors

Inhabitable m2 141.5 136.0 41.5 0.0

Neighborhood price per m2 (pi,τ ) 15808.2 13188.0 9514.3 1.5

Plot size m2 772.6 788.0 317.3 0.0

Meters above sea level 27.8 23.3 20.8 0.1

Distance to coastline (meters) 7331.4 4384.8 8631.4 0.2

Ordinal regressors

Number of rooms 4.8 5.0 1.3 0.0

Number of bathrooms 1.4 1.0 0.5 0.0

Construction year 1961.7 1967.0 29.8 0.0

Number of floors 1.1 1.0 0.2 0.0

Number of buildings 2.2 2.0 0.8 0.0

Building age at sale 56.2 50.0 33.2 0.0

Minor damage 12.2 11.0 8.6 11.1

Major damage 7.3 6.0 7.0 11.1

Major damage with risk of spreading 4.7 4.0 4.7 11.1

Unknown concerns in status report 0.1 0.0 0.4 11.1

Minor damage (electricity) 6.5 5.0 5.1 18.2

Major damage (electricity) 2.5 2.0 3.1 18.2

Major damage with risk of spreading (electricity) 0.5 0.0 0.8 18.2

Unknown concerns in electricity report 0.6 0.0 1.7 18.2
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Table 5
Descriptive table, categorical variables

Variable name Mean Median
Std.

deviation
Pct.

missing Histogram

Categorical regressors

Type of house (detached, terraced) 0.0

Heating source 0.0

Supplementary heating source 0.0

Roof type 0.0

Garage dummy 0.0

Auxiliary shed dummy 0.0

Neighborhood size for pi,τ 1.5

Fixed effects

Municipality 0.0
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C Estimation assuming homogenous sales price effects of energy efficiency and
prices

Table 6 shows the estimates of the house price elasticities with respect to the two main
regressors, standardized energy consumption and energy price, based on a model assuming
homogenous effects. Hence, these estimates do not account for heterogeneity. They are
meant to serve as benchmark estimates of the average effects to which we can compare the
estimates which take heterogeneity into account (table 1).

We consider four different estimations: The first row in table 6 contains the results of a
linear regression of sales price on standardized energy consumption and energy price, all in
logs, estimated with OLS with no controls (other than a constant). In the second row this is
augmented to include all controls except the geographical ones (price area, municipalities
and average neighborhood price level). In the third row the geographical controls are further
added so this is the preferred estimation among the first three. Finally, in the fourth row
all controls are included (as in the third row), and the estimation is based on the double
machine learning approach described in section 2.2. Inference is provided in the form of
standard t-ratios. For the preferred estimation and the estimation with all controls except
the geographical ones, we also report t-ratios based on clustering the variance-co-variance
structure by municipality.

The results in table 6 suggest that lower energy efficiency (higher standardized consump-
tion) reduces house prices. There are substantial differences in the order of magnitude of the
estimates across the four estimations. Comparing the simple unconditional estimation in the
first row with the preferred ones in the third and fourth rows stresses the need of adjusting
for structural and geographical variables. The first stages of the DML models further support
this interpretation. For these models we obtain an out-of-sample R2 of 84% for house prices,
71% for standardized energy consumption, and 74% for energy prices. In other words, our
controls account for the great majority of the variation in each of our variables of interest.

The preferred estimate based on OLS is -0.236% and thus twice as big as that based on
DML (-0.12%). The two estimates represent an upper and a lower bound for the average
(absolute) elasticity. The difference arises as the non-linear orthogonalization in the DML
estimation controls for confounding variation to a larger extent.

For the elasticity with respect to energy price, the results are primarily negative, but
smaller and less significant. However, focusing on the preferred specifications in rows 3
and 4, the estimates are negative and significant (borderline significant when clustering).
The counter-intuitive positive sign in the second row is most likely due to unobserved
heterogeneity and is discussed in section 4.
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Table 6
Estimated aggregate price elasticities (homogenous effects)

Standardized energy consumption Energy price

Point
estimate t-value

t-value
(clust.)

Point
estimate t-value

t-value
(clust.)

OLS, no controls -0.439 -95.262 -0.010 -1.397
OLS, no geographic controls -0.054 -10.841 -0.942 0.170 21.334 1.595
OLS -0.236 -85.598 -13.367 -0.038 -8.227 -1.926
DML -0.120 -32.643 -0.056 -10.439

NOTES: All results are based on a common sample of 195,395 non-repeated individual sales of single family homes and
townhouses in Denmark taking place between January 2014 and May 2020. The table shows coefficients and t-values for
both standardized energy consumption and energy price, where the regressand is the log square meter prices at sale. The
first and fourth columns show point estimates; the second and fifth columns show t-values computed under the assumption
of independent observations; The third and sixth columns show t-values computed by allowing for arbitrary autocorrelation
of errors within municipalities. The rows indicate the model and the controls used for the estimation. For a full list of
controls included in the regression see tables 5 and 4.

D Causal forests: Additional results and diagnostics

Table 7
Omnibus test for heterogeneity

Point
estimate Std. error t-value 95% confidence interval

Standardized consumption

Mean prediction (βC) 0.896 0.029 -3.546 0.839 0.954
Differential prediction (βD) 1.335 0.040 13.575 1.678 1.907

Energy price

Mean prediction (βC) 0.811 0.137 -1.377 0.543 1.080
Differential prediction (βD) 1.183 0.056 2.274 1.086 2.160

NOTES: The table shows the results of the omnibus test for heterogeneity suggested by Athey and Wager (2019),
which checks whether the estimated Conditional Average Treatment Effects (CATEs) predict well (out of sample) the
orthogonalized outcome, given the orthogonalized regressor. Denote τ̂−i as the estimated CATE (the −i superscript means
that the CATE is estimated out-of-bag), τ̃ as the average estimated CATE, yi − m̂−i(Xi) the residualized outcome, where
m̂−i is the estimated first-stage (set of) model(s), and Ti − ê−i(Xi) the residualized regressor.
We then estimate the regression

yi − m̂−i(Xi) = βC · τ̃
(
Ti − ê−i(Xi)

)

︸ ︷︷ ︸
Ci

+βD ·
(
τ̂−i − τ̃

)(
Ti − ê−i(Xi)

)

︸ ︷︷ ︸
Di

where the coefficient βC represents how well the CATEs capture the average effect, and βD captures how well the causal
forest capture heterogeneity. In a well calibrated model, both coefficient should be equal to 1. As Athey and Wager argue,
the p-value of βD can act as a test of the hypothesis that the causal forests found meaningful heterogeneity in the data.
This test reveals that while we detect substantial heterogeneity in the data, the Causal Forest model is not perfectly
calibrated, and therefore we use it only as a guidance for identifying relevant dimensions of heterogeneity.

33



VERSION - SEPTEMBER 9, 2022

Figure 10
Interpreting CFs
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Figure 11
Partial regression plots for energy prices by price area and type of heating
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NOTES: The figure shows a binned residualized scatterplot of the relationship between log house prices per m2 and key
variables of interest, divided by price areas (left) and heating source (right). Each plot residualizes the main regressor of
interest and the regressand using the estimated first-stage gradient boosted trees models. For each price area we then bin
the residuals in 50 approximately equally-sized bins according to the regressor residuals, such that each bin represents
approximately 2% of the data within each group. Finally, we plot the average of the regressand and regressor residuals
against each other for each bin in a scatterplot, where the size of each point is proportional to the number of observations it
represents.
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